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Abstract

In this article, we present and analyze a conservative approximation to reduced one-pressure one-velocity models for
compressible two-phase flows that contain non-conservative products. This approximation is valid when certain material
properties of the two phases are considerably different from each other. Although it cannot be applied to arbitrary
mixtures, it is applicable to many heterogeneous mixtures of technological interest. Herein, we derive the Rankine–Hugon-
iot relations and Riemann invariants for the homogeneous part of the proposed model and develop an exact Riemann
solver for it. Further, we investigate the structure of the steady two-phase detonation waves, with inert or reactive solid
particles, admitted by the proposed model. Comparisons with the corresponding gaseous detonations are also made.
Moreover, we derive a lower limit for the propagation speed of steady two-phase detonations in the case of reactive
particles. At the limiting case of very dilute mixtures, this minimum speed tends to the Chapman–Jouguet velocity of
gaseous detonations. Finally, we report on numerical simulations of the transmission of a purely gaseous detonation to
heterogeneous mixtures containing inert or reactive solid particles. The effect of the solid particles on the structure of
the resulting two-phase detonation is discussed in detail.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Compressible two-phase flows arise in various natural and technological applications such as sandstorms,
volcanic eruptions, power plants, chemical plants, solid rocket motors, detonation coatings, deflagration-to-
detonation transition in granular explosives, and others. These flows are quite difficult to study due to the
presence of complex physical processes (chemical reactions and/or phase transitions, momentum and energy
exchange between the phases, etc.) and due to the large number of spatial and temporal scales associated with
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those processes. In this article, we propose a conservative approximation to models for compressible two-
phase flows in the limit of stiff mechanical relaxation. Subsequently, we solve the resulting system of equations
numerically and perform simulations of detonations carrying small amounts of solid particles.

Over the years various approaches have been proposed to develop mathematical models for compressible
two-phase flows. In general, such models are obtained by either an averaging approach or a mixture-theory
approach. Averaging approaches are based on kinetic theories and consider one phase as an ensemble of
interacting particles embedded in a carrier fluid medium. The number density of particles expressed in an
appropriate phase space (coordinate-velocity space for instance) is the distribution function and obeys a Boltz-
mann-type equation. This equation is integrated over the phase-space to derive the governing equations for
the medium, see Drew and Passman [1] and Enwald et al. [2]. This procedure, referred to as ensemble aver-
aging, can be replaced by time or volume averaging, provided that the ergodic hypothesis is satisfied. How-
ever, the complexity of interactions between the solid particles (anelastic collisions, different particle sizes,
three-body collisions etc.) and the presence of a surrounding fluid medium does not allow a straightforward
application of kinetic theories. As a result, kinetic-theory approaches have not yet resulted in the development
of a sufficiently sophisticated model, i.e., a model that is able to describe all the subtleties of the flow-fields of
interest.

On the other hand, mixture approaches treat the phases as two separate but coexisting continua that are in
thermodynamic non-equilibrium with each other. The balance equations can be derived by variational prin-
ciples or by application of irreversible thermodynamics theories, or even by heuristic approaches. A well-
known model in this category has been proposed by Baer and Nunziato [3], who aimed at describing a gran-
ular explosive in which the gaseous phase fills completely the interstitial pores. In this model, each phase is
assigned a set of thermodynamic variables and a velocity. The source terms describing interactions between
the two phases are derived by employing the entropy inequality for the mixture. Further, an evolutionary
equation for the porosity of the mixture is obtained. According to this, the volume fraction of the solid phase
is advected with the solid velocity. However, this automatically implies that, for a saturated medium, the gas-
eous volume fraction is also advected with the solid velocity, thus introducing an important asymmetry to the
mathematical model. An important characteristic of this model is that, due to the momentum exchange
between the two phases, the momentum and energy equations of each phase contain non-conservative prod-
ucts, i.e., terms which cannot be written in divergence form. These terms are often referred to as ‘‘nozzling
terms”, due to their analogy to similar terms that appear in the Euler equations for 1D duct flow.

This model, although quite popular, is not free of deficiencies, as pointed out by Bdzil et al. [4]. For exam-
ple, the model does not treat in a thermodynamically consistent way the volume-fraction dependence of the
solid phase free energy, see also Powers et al. [5]. Moreover, the source terms proposed in [3] are only one
realization of the many possibilities that are compatible with the dissipation inequality as employed in [3].
The authors in [4] took advantage of this flexibility to suggest improvements in the construction of the
exchange terms. The homogeneous part of the original model remained however unchanged. In particular,
non-conservative terms were still present.

Also, Saurel and Abgrall [6] proposed a new compressible two-phase model by applying volume averaging
and by neglecting all dissipative terms everywhere except at the interfaces. Their formulation provides some
flexibility in the choice of interfacial pressure and velocity. Motivated by heuristic arguments, Saurel and
Abgrall [6] estimated the interfacial pressure as being the mixture pressure, and the interfacial velocity as being
the weighted average of the phase velocities.

More recently, Papalexandris [7] applied the classical theory of irreversible processes to derive a model for
saturated heat-conducting and viscous mixtures of a granular medium and a fluid. This theory provided a
straightforward way to properly take into account all thermodynamic forces that appear in the balance equa-
tions of the mixture. Therefore, new constitutive relations for the phase interactions were obtained, as well as
for the (non-Newtonian) viscosity of the granular medium. Nonetheless, in the hyperbolic limit (no dissipation
mechanism inside each phase) the homogeneous part of the system was very similar to the earlier models [3,4].
In particular, both volume fractions are advected with the velocity of the solid phase, and non-conservative
products appear in the momentum and energy equations of both phases.

As can be observed, most two-phase models do contain non-conservative products. Some modeling and
numerical studies ignore these terms, either by choice, Gonthier and Powers [8], or by convenience,
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Papalexandris [9,10], but this can potentially lead to violation of the entropy inequality. Therefore, it is
generally accepted that the flow models should include these terms. Unfortunately, their presence introduces
serious analytical and computational difficulties. First of all, weak solutions of the equations cannot be
defined in the standard sense of distributions. As a result, the Rankine–Hugoniot relations for a shock
cannot be defined in an unambiguous way. More important, non-conservative products are responsible
for the ill-possedness of the associated homogeneous Riemann problem, Andrianov and Warnecke [11],
Deledicque and Papalexandris [12], Powers [13] and Vreman [14]. In particular, there are initial conditions
for which the Riemann problem might possess two solutions or no solution at all. According to the
authors in [12], this is indicative of a breakdown of the validity of the afore-mentioned hyperbolic flow
models.

On the other hand, some authors adopted the point of view that it is not necessary to resolve all scales of
the flow with the same level of accuracy. For example, in certain applications, estimates reveal that the
length scales for mechanical equilibration are very small in comparison with the ones associated with
thermal or chemical equilibration, see Kapila et al. [15]. This implies that, for global flow structures, car-
rying two velocity or two-pressure variables could be a superfluous complexity. Thus, it would be meaning-
ful to reduce the complete two-phase models to simplified one-pressure one-velocity models. Such a reduced
model has been proposed in [15] for instance. According to it, the thin layers across which all dissipative
effects due to velocity and pressure non-equilibrium take place, are modeled as exact discontinuities
(shocks). This is equivalent to assuming an infinitely fast relaxation procedure for mechanical equilibrium.
It has been shown that this model is thermodynamically consistent, in the sense that it does not violate the
entropy inequality.

However, this model still contains non-conservative products and therefore, Rankine–Hugoniot relations
cannot be defined in an unambiguous manner. In particular, an additional closure relation is needed to pro-
vide a full set of jump conditions. This relation may be provided by some regularization procedure. Such a
regularization has been proposed in [15], and more recently, by Saurel et al. [16]. The latter takes into account
the finite thickness of shock waves, thus enabling the derivation of a kinematic relation that can serve as an
additional jump condition. Their approach, although not free of certain restrictions, can produce shock pres-
sures and velocities that compare well with experimental results. Unfortunately, even with this additional rela-
tion, the well-possedness of the Riemann problem is not guaranteed. This has a profound effect in the design
of algorithms for the numerical treatment of the governing equations because most modern schemes for com-
pressible flow simulations are based on a Riemann solver.

In this article, we propose a way to circumvent these difficulties by employing an additional assumption,
besides the infinitely fast relaxation. Under the hypothesis that the solid phase density and sound speed are
much larger than the gaseous phase density and sound speed, respectively, we demonstrate that these
reduced models can in fact be written in conservative form. This hypothesis is realistic for many heteroge-
neous mixtures. The evolutionary equation for the volume fraction then simply expresses conservation of the
solid volume, apart from volume exchanges due to heat transfer effects and combustion of the solid
particles.

This paper is organized as follows. In Section 2 we present the one-pressure one-velocity model developed
in [15] and derive the proposed conservative approximation to it. Although this two-phase model can be
applied to various compressible flow applications, we focus our attention to the study of detonations in gases
carrying solid particles. Hence, we augment the system of conservation equations by conservation laws for the
particle number density and gaseous reactant mass fraction. The entire system can be cast in divergence (con-
servative) form. In Section 3 we perform the characteristic analysis of the reduced conservative model, and
derive the Riemann invariants and Rankine–Hugoniot shock relations. Subsequently, we briefly describe
the numerical procedure employed to solve the Riemann problem associated with the system in hand. In Sec-
tion 4, we present a steady wave analysis for the governing set of equations. The structures of these waves are
compared with the ones of the corresponding gaseous detonations (ZND waves). We also establish, for par-
ticular cases, a minimum propagation speed of these steady waves, equivalent to the CJ speed of gaseous det-
onations. Finally, in Section 5, we consider the transmission of a gaseous detonation to a heterogeneous
mixture, containing reacting or inert solid particles, and discuss the results obtained by 1D numerical simu-
lations. We also provide the results of a preliminary 2D simulation.
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2. Presentation of the mathematical model

In this study, we consider solid particles dispersed in a gaseous medium. The flow of this mixture is assumed
to be inviscid and non-heat-conducting, in other words we are interested in flows where compressibility effects
are dominant. Both phases are modeled as two separate but coexisting continua. Each phase is assigned a vol-
ume fraction /a and a density qa, where a ¼ s; g and ‘‘s” and ‘‘g” denote the solid and gaseous phase, respec-
tively. It is assumed that the mixture is saturated, i.e., that /s þ /g ¼ 1. Under the hypothesis of stiff
mechanical relaxation, the pressures and velocities of each phase are identical, henceforth denoted by p and
u. Experimental evidence for the validity of this assumption has been discussed in [15], in the context of def-
lagration-to-detonation transition in granular materials.

The gaseous phase consists of the reactive species A and the inert species B. These two substances are
assumed to have equal specific heats. The species A reacts according to
A! B: ð1Þ
Let z denote the gaseous reactant mass fraction. It satisfies 0 < z < 1 and it equals unity when the gaseous
phase consists purely of A and zero when the gaseous phase consists only of the inert substance B.

The solid phase consists of a single substance, C, which can react according to
C ! B: ð2Þ
For convenience, it is assumed that the particle diameter ds is identical for all particles. The solid volume frac-
tion is related to the particle number density N s via
/s ¼ N s

pd3
s

6
: ð3Þ
The mixture density q and the mixture specific total energy et are given by
q ¼ /gqg þ /sqs; ð4Þ

qet ¼ /gqgeg þ /sqses þ q
u2

2
þ qg/gqgzþ qs/sqs; ð5Þ
where eg and es denote the gaseous and solid specific internal energies, respectively, qg is the heat release from
the gaseous reaction (1), and qs is the heat release from the heterogeneous reaction (2).

The governing equations of the heterogeneous mixture are
o/gqg

ot
þ

o/gqgu

ox
¼ M ; ð6aÞ

o/sqs

ot
þ o/sqsu

ox
¼ �M ; ð6bÞ

oqu
ot
þ oðqu2 þ pÞ

ox
¼ 0; ð6cÞ

oqet

ot
þ oðqetuþ puÞ

ox
¼ 0; ð6dÞ

o/g

ot
þ u

o/g

ox
¼ L

ou
ox
� S; ð6eÞ

o/gqgz

ot
þ

o/gqgzu

ox
¼ Q; ð6fÞ

oN s

ot
þ oN su

ox
¼ 0: ð6gÞ
Eqs. (6a) and (6b) are the mass balance laws for each phase with M representing the mass exchange between
the two phases due to the burning of the solid particles. In this study, the following ignition-type mechanism
has been considered, see Papalexandris [9],
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M ¼
0; T s < T ign;

Ks/sqs=d2
s ; T s P T ign;

�
ð7Þ
where Ks is the time constant of the particle burning, T s is the temperature of the particles and T ign is the igni-
tion temperature beyond which particles begin to react. Temperature gradients inside the particles are
neglected.

Eqs. (6c) and (6d) are the momentum and energy conservation laws of the mixture, respectively. Further,
(6e) is an evolution equation for the volume fraction, proposed in [15]. In this relation,
L ¼
qsc

2
s � qgc2

g

qgc2
g

/g
þ qsc2

s

/s

; ð8Þ
where ca represents the sound speed of phase a, and S describes the volume fraction changes due to heat and
mass transfer between both phases
S ¼
HðT g � T sÞ Cg

/g
þ Cs

/s

� �
� c2

g

/g
þ c2

s

/s

� �
M

qgc2
g

/g
þ qsc2

s

/s

: ð9Þ
Here T s and T g are the solid and gas temperatures, respectively, whereas Cs and Cg are the solid and gas Grün-
eisen coefficients, respectively. Further, H is the heat transfer coefficient and satisfies, [9],
H ¼ p
cpgNu

Pr
ldsN s: ð10Þ
In this relation, cpg is the specific heat of the gaseous phase, Nu and Pr are the Nusselt and Prandtl numbers,
respectively, and l is the gas viscosity. An empirical correlation of Knudsen and Katz [17] is employed for the
calculation of Nu. However, as the two phases move at the same speed, that relation predicts a constant value,
Nu ¼ 2. Also, an empirical relationship, given by Chapman and Cowling [18], is employed for the calculation
of the gas viscosity, as a function of T g
l ¼ l0

T g

T 0

� �0:77

; ð11Þ
where l0 is the gas viscosity at T 0 ¼ 273K.
Further, Eq. (6f) describes the evolution of the reactant mass fraction z. In this equation, Q represents the

gaseous reaction rate. Herein, Q is modeled by an one-step Arrhenius law
Q ¼ �Kg/gqgz exp
�Ea

RT g

� �
; ð12Þ
where Kg is the reaction’s pre-exponential factor, Ea is the activation energy and R is the gas constant.
Finally, Eq. (6g) expresses the conservation of the number density of the particles. Although not employed
here, phenomena such as breakup or coalescence of particles can be modeled with a suitable source term in
(6g).

Eqs. (6a)–(6g) constitute a hyperbolic system, which cannot be put in conservative form because of the
non-conservative product appearing in (6e). This implies that weak solutions cannot be defined in the stan-
dard sense of distributions and, therefore, Rankine–Hugoniot relations for the system in hand cannot be
defined in an univocal manner, [19]. As mentioned above, to circumvent this difficulty one can employ a
closure relation by considering dispersed shock profiles instead of exact ones, [16]. However, this additional
relation is not the Rankine–Hugoniot of (6e) and, therefore, existence and uniqueness of the resulting Rie-
mann problem cannot be guaranteed. This makes the design of algorithms for the numerical treatment of
(6) very cumbersome since most of the modern schemes for compressible flow simulations are based on a
Riemann solver.

Herein we propose an alternative way around these difficulties. In particular, we consider a conservative
approximation of the system (6). Although this approximation cannot be valid for arbitrary materials, it is
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still applicable to a large class of heterogeneous mixtures. In order to fix ideas, let us assume that both phases
obey a stiffened gas equation of state,
ea ¼
p þ caP a

ðca � 1Þqa

¼ p þ caP a

p þ P a
cv;aT a; ð13Þ
where ca, P a and cv;a are material specific constants. The speed of sound is given by
qac2
a ¼ caðp þ P aÞ: ð14Þ
The conservative approximation we propose is based on the hypothesis that
P g � p� P s ð15Þ

and
cg < cs: ð16Þ
In fact, a wide variety of flows of heterogeneous mixtures of technological interest do satisfy these inequalities.
The inequalities (15) and (16) permit us to write
qgc2
g

qsc2
s

�
cgp

csP s

� 1: ð17Þ
By virtue of (17), L can be approximated as
L ¼ /s/g

1� qgc2
g

qsc2
s

1� /sð1�
qgc2

g

qsc2
s
Þ
� /s: ð18Þ
Similarly,
S �
HðT g � T sÞðCg/s þ Cs/gÞ � ðc2

g/s þ c2
s /gÞM

/gqsc2
s

: ð19Þ
We mention that even for higher pressures, i.e., p > P s, this above approximation is still valid to a certain ex-
tent because, typically, cs > cg.

The advantage of this simplification is that the evolution equation for the volume fraction can be expressed
in conservative form, and the system of governing equations becomes
o/gqg

ot
þ

o/gqgu

ox
¼ M ; ð20aÞ

o/sqs

ot
þ o/sqsu

ox
¼ �M ; ð20bÞ

oqu
ot
þ oðqu2 þ pÞ

ox
¼ 0; ð20cÞ

oqet

ot
þ oðqetuþ puÞ

ox
¼ 0; ð20dÞ

o/s

ot
þ o/su

ox
¼ S; ð20eÞ

o/gqgz

ot
þ

o/gqgzu

ox
¼ Q; ð20fÞ

oN s

ot
þ oN su

ox
¼ 0: ð20gÞ
At this point it is interesting to compare the limits of this model with the one of system (6) at very dilute or
very dense mixtures. In the case of a very dilute mixture, i.e., when /s ! 0, L tends to the same value for both
models
lim
/s!0

L ¼ 0; ð21Þ
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see Eqs. (8) and (18). At this limit, the evolution equation for the volume fraction is the same for both models.
On the other hand, for very dense mixtures, the models have different limits. Indeed, for the system (6) we have
lim
/s!1

L ¼ 0; ð22Þ
whereas for the approximate model (6) we have
lim
/s!1

L ¼ 1; ð23Þ
It is thus expected that at this limit the two models behave quite differently, which implies that the approxi-
mate model is no longer valid.

As mentioned earlier, the proposed simplified model is derived by complete two-pressure two-velocity mod-
els by use of two main approximations. These are (i) infinitely fast mechanical relaxation between the two
phases and (ii) inequality (17). In general, these approximations, hence the model itself, are not valid in the
entire range of physical parameters involved in two-phase flows. Therefore, the proposed model is applicable
within a certain range of physical parameters only. Nonetheless, it is expected that its range of validity is of
physical and technological interest.

In order to support the above argument, we provide a comparison between the predictions of the proposed
reduced model and the complete two-pressure two-velocity model of Gonthier and Powers [8]. That model
amounts to a conservative hyperbolic system of balance laws because it does not take into account non-con-
servative products. It is generally accepted that non-conservative products should be included in two-phase
models, as done in [3,4,6,7] and elsewhere. However, our choice to use a conservative model for comparisons
has been dictated by the fact that the Riemann problem of hyperbolic models for two-phase flows containing
non-conservative products is ill-possed; see [12]. This, in turn, makes the development of numerical algorithms
for non-conservative models very problematic. As a matter of fact, this ill-possedness has been our main moti-
vation for deriving a reduced conservative model.

In our comparisons, we have examined the profiles of a steady two-phase detonation wave. An analysis of
the steady-wave profile admitted by the proposed reduced model and a numerical procedure for solving them
is given in Section 3. The equations of the complete model [8] are integrated via a first-order shock-capturing
algorithm using an approximate HLL-type Riemann solver. The two-phase detonation is initiated with a mov-
ing piston. The compression of the heterogeneous mixtures results in the formation of a stable detonation
wave. In our simulation we have imposed wall conditions on the left boundary and inflow conditions on
the right boundary. The simulation is performed in the reference frame of the moving piston. The piston veloc-
ity is 2500m=s. Further, the physical parameters have been set at,
cg ¼ 1:333; P g ¼ 0; cs ¼ 4:5; P s ¼ 20� 108 Pa;

cv;g ¼ 2 kJ=kgK; cv;s ¼ 4kJ=kgK; qg ¼ 5MJ=kg;

Kg ¼ 2� 106 s�1; Eag ¼ 3; 5MJ=kg; lc ¼ 1kg=ðmsÞ;
Finally, the solid volume fraction of the initially quiescent medium is set at /s ¼ 10�5. With these values, the
simulation with the complete model [8] predicted a detonation propagating at a speed D ¼ 3580m=s.

Figs. 1–4 show pressure, velocity, temperature and solid volume fraction profiles, respectively, as predicted
by the two models. In these figures, it can be observed that the thermal relaxation zone is much longer than the
pressure and velocity relaxation zones. Moreover, except for a narrow region behind the precursor shock,
which is the mechanical relaxation zone, the two models predict very similar profiles. These results suggest that
the proposed reduced model can in fact provide reliable predictions for a certain range of physical parameters
of technological interest.

At this point we should repeat that the predictions of our proposed model are correct if condition (4.17) is
satisfied. This condition is in addition to the hypothesis of stiff mechanical relaxation. In other words, (4.17) is
necessary but not sufficient. In fact, there can be cases in which (4.17) is valid but the stiff mechanical relax-
ation hypothesis is not. These cases can arise in dilute mixtures with low shock pressures.

Also, in the example above, the thermal relaxation zone is much longer than the mechanical relaxation zone
but the width of the later is at the order of the width of the reaction zone and, thus, non-negligible. Therefore,
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the reduced model cannot describe the fine structures of the flow inside the reaction zone. Instead, it may only
predict the evolution of the mixture’s velocity and pressure. The prediction of these average values will be cor-
rect if condition (4.17) is satisfied. This is indeed the case for the example shown above. In this particular
example, the proposed reduced model tracks very well with the gas values of the complete model because
the solid mass fraction is very small and, therefore, the mixture’s flow variables are largely influenced by those
of the gaseous phase.

3. Characteristic analysis and solution of the Riemann problem

As mentioned above, most modern numerical algorithms for compressible flows are based on a (approxi-
mate or exact) solution of the Riemann problem of the governing equations. In this section, we derive the
Rankine–Hugoniot relations and the Riemann invariants that hold along the characteristic curves of the
homogeneous part of the system (20). These relations are the necessary and sufficient ingredients for the design
of a Riemann solver.
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3.1. Characteristic analysis

By defining U ¼ ðqg; qs; u; p;/s; z;N sÞ, the governing equations (20) can be written in the compact form
oU
ot
þ F ðUÞ oU

ox
¼ GðUÞ ð24Þ
with
F ðUÞ ¼

u 0 qg=/g 0 0 0 0

0 u 0 0 0 0 0

0 0 u 1=q 0 0 0

0 0 qc2 u 0 0 0

0 0 /s 0 u 0 0

0 0 0 0 0 u 0

0 0 N s 0 0 0 u

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;
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GðUÞ ¼

ðM þ qgSÞ=/g

�ðM þ qgSÞ=/g

0

ĝ

S

ðQ� zMÞ=ð/gqgÞ
0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

where
ĝ ¼
Mðes � eg þ qsÞ � qgQþ ðM þ qsSÞqs

oes

oqs
� ðM þ qgSÞqg

oeg

oqg

/gqg
oeg

op þ /sqs
oes

op

: ð25Þ
In these expressions, c is the mixture sound of speed, defined by
c2 ¼ 1

q

p � q2
g

oeg

oqg

/gqg
oeg

op þ /sqs
oes

op

0
@

1
A: ð26Þ
The eigenvalues of F ðUÞ are
k1 ¼ u� c;

k2 ¼ uþ c;

k3 ¼ k4 ¼ k5 ¼ k6 ¼ k7 ¼ u

ð27Þ
and the corresponding right eigenvectors are
r1 ¼ � qg

/gc ; 0; 1; �qc; � /s

c ; 0; � N s

c

� �
; ð28aÞ

r2 ¼
qg

/gc ; 0; 1; qc; /s

c ; 0; N s

c

� �
; ð28bÞ

r3 ¼ 1; 0; 0; 0; 0; 0; 0ð Þ; ð28cÞ
r4 ¼ 0; 1; 0; 0; 0; 0; 0ð Þ; ð28dÞ
r5 ¼ 0; 0; 0; 0; 1; 0; 0ð Þ; ð28eÞ
r6 ¼ 0; 0; 0; 0; 0; 1; 0ð Þ; ð28fÞ
r7 ¼ 0; 0; 0; 0; 0; 0; 1ð Þ: ð28gÞ
The system is not strictly hyperbolic because u is a fivefold eigenvalue. On the other hand, the set of eigenvec-
tors is complete, so no parabolic degeneracy exists. The wave fields associated with k1 and k2 are genuinely
non-linear, whereas the wave fields associated with k3;4;5;6;7 are linearly degenerate. Physically, this means that
k1 and k2 are associated with shocks or rarefactions, whereas k3;4;5;6;7 are associated with coinciding contact
discontinuities.

Before we proceed to determine the relations that hold across shocks, rarefactions and contact discontinu-
ities, it is interesting to examine the influence of the solid volume fraction on the mixture speed of sound c. If
both phases obey a stiffened gas equation of state, Eq. (26) reduces to
c2 ¼
cgðp þ P gÞ

q
cs � 1

/gðcs � 1Þ þ /sðcg � 1Þ : ð29Þ
Fig. 5 shows the variation of the mixture speed of sound with the gas volume fraction for the present model
(20) and for the system (6), for a particular set of physical parameters. As mentioned in [15],the mixture speed
of sound corresponding to (6) is in good agreement with those measured experimentally for many heteroge-
neous mixtures with stiff mechanical relaxation. Further, from Fig. 5 it can be inferred that the mixture sound
speeds for both the system (6) and the proposed conservative approximation (20) are very close at low and
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Fig. 5. Mixture speed of sound for the model of Kapila et al. [15] (dashed line) and the present model (solid line). The physical parameters
are set at: cg ¼ 1:4, cs ¼ 2:5, P g ¼ 0, P s ¼ 13� 108 Pa, qg ¼ 1 kg=m3, qs ¼ 1000 kg=m3 and p ¼ 105 Pa.
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medium solid volume fractions. For example, for /s ¼ 0:3, the relative difference in the predictions of c is
about 5%. On the other hand, at very dense mixtures, we observe large differences between the mixture sound
speeds, as predicted by the two models. Such a behaviour is in agreement with the analysis of the validity limit
of the conservative approximation that was given in the previous section. We mention here that in the numer-
ical simulations presented in this article, the solid volume fractions will always be kept smaller than 0:3.

3.2. Rankine–Hugoniot relations across a shock

Since the balance equations are in conservative form, the Rankine–Hugoniot relations for the homoge-
neous part of Eqs. (20) can be derived in a straightforward manner. The result is
/�gq
�
gðu� � wÞ ¼ /g0qg0ðu0 � wÞ; ð30aÞ

/�s q
�
s ðu� � wÞ ¼ /s0qs0ðu0 � wÞ; ð30bÞ

q�u�ðu� � wÞ þ p� ¼ q0u0ðu0 � wÞ þ p0; ð30cÞ
q�e�t ðu� � wÞ þ p�u� ¼ q0et0ðu0 � wÞ þ p0u0; ð30dÞ
/�s ðu� � wÞ ¼ /s0ðu0 � wÞ; ð30eÞ
/�gq

�
gz�ðu� � wÞ ¼ /g0qg0z0ðu0 � wÞ; ð30fÞ

N �s ðu� � wÞ ¼ N s0ðu0 � wÞ; ð30gÞ
where the suffix ‘‘0” denotes the unshocked state, the exponent ‘‘�” denotes the shocked state and w is the
shock speed. By defining the solid mass fraction, Y s � ð/sqs=qÞ and the gaseous mass fraction
Y g � ð/gqg=qÞ, these equations may be written in the following form:
m � q�ðu� � wÞ ¼ q0ðu0 � wÞ; ð31aÞ
Y �s ¼ Y s0; ð31bÞ
p� � p0 þ m2ðv� � v0Þ ¼ 0; ð31cÞ

e� � e0 þ
p� þ p0

2
ðv� � v0Þ ¼ 0; ð31dÞ

z� ¼ z0; ð31eÞ
/�s
q�
¼ /s0

q0

; ð31fÞ

N �s
q�
¼ N s0

q0

: ð31gÞ
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Henceforth, we use the fact that the gas and solid phases obey a stiffened gas equation of state. The com-
bination of (31b) and (31f) yields
q�s ¼ qs0: ð32Þ
Expanding (31d) by using (13), (31b) and (32) yields
v�g ¼
Y g0vg0

p0þcgP g

cg�1
þ p0þp�

2

� �
þ Y s0vs0

p0�p�

cs�1

Y g0
p�þcgP g

cg�1
þ p0þp�

2

� � ; ð33Þ
where va ¼ q�1
a is the specific volume of phase a ¼ g; s

To determine the shocked state, we proceed in the following way. If the unshocked state and p� are known,
then Eqs. (31) and (32) yield
Y �g ¼ Y g0; ð34Þ

Y �s ¼ Y s0; ð35Þ

q�s ¼ qs0; ð36Þ

z� ¼ z0: ð37Þ
Subsequently, v�g is computed by (33). Then the specific volume of the mixture in the shocked (down-
stream) state is given by v� ¼ Y �gv�g þ Y �s=q

�
s . This allows the calculation of the downstream solid volume

fraction
/�s ¼
/s0

q0v�
ð38Þ
and of the mass flux, cf. (31)
m ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 � p�

v� � v0

r
; ð39Þ
where the sign depends on the characteristic field. For a k1 shock, the negative sign has to be chosen, whereas
for a k2 shock, the positive sign has to be chosen. The shock speed is then written as
w ¼ u0 � mv0: ð40Þ
Finally, with the aid of (31a) and (40) we get
u� ¼ mv� þ w: ð41Þ
3.3. Riemann invariants

We now proceed to calculate the Riemann invariants, which correspond to the conserved quantities
across rarefaction waves and contact discontinuities. Since there is no characteristic length or time scale
in the homogeneous part of the governing system, the Riemann problem is self-similar, i.e., rarefactions
and contact discontinuities are straight lines in the x� t plane. This implies that these waves represent
solutions of the system of interest in the form of f ðn � x� wtÞ, with w being the speed of the rarefaction
waves or contact discontinuities. If such a change of variable is introduced, the governing equations
become
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ðu� wÞ dY s

dn
¼ 0; ð42aÞ

ðu� wÞ dq
dn
þ q

du
dn
¼ 0; ð42bÞ

ðu� wÞ du
dn
þ 1

q
dp
dn
¼ 0; ð42cÞ

ðu� wÞ dp
dn
þ qc2 du

dn
¼ 0; ð42dÞ

ðu� wÞ d/s

dn
þ /s

du
dn
¼ 0; ð42eÞ

ðu� wÞ dz
dn
¼ 0; ð42fÞ

ðu� wÞ dN s

dn
þ N s

du
dn
¼ 0: ð42gÞ
In the case of a contact discontinuity, w ¼ u. Then, the above equations yield
u� ¼ u0; ð43Þ
p� ¼ p0; ð44Þ
where the suffix ‘‘0” denotes the downstream state and the exponent ‘‘�” denotes the upstream state of the
contact discontinuity.

In the case of a rarefaction, w ¼ u� c, and Eqs. (42) become
dY s ¼ 0; ð45aÞ
dq
q
¼ � du

c
; ð45bÞ

dp ¼ �qcdu; ð45cÞ
d/s

/s

¼ � du
c
; ð45dÞ

dz ¼ 0; ð45eÞ
dN s

N s

¼ � du
c
: ð45fÞ
It should be mentioned that Eq. (42d), not rewritten here, has become identical with Eq. (42c). Some simple
manipulations of (45) lead to
dY s ¼ 0; ð46aÞ
dq
q
¼ d/s

/s

; ð46bÞ

dp ¼ �qcdu; ð46cÞ
d/s

/s

¼ dp
qc2

; ð46dÞ

dz ¼ 0; ð46eÞ
dN s

N s

¼ d/s

/s

: ð46fÞ
which are the equations we integrate in order to obtain the Riemann invariants relative to a rarefaction. First,
the combination of (29) in (46d) gives
dp
p þ P g

¼
cgðcs � 1Þ

/sð/sðcg � csÞ þ ðcs � 1ÞÞ d/s; ð47Þ
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which can be integrated analytically. The result is
/�s ¼
/s0ðcs�1Þ

ðcg�csÞ/s0þðcs�1Þ
p�þP g

p0þP g

� � 1
cg

1� ðcg�csÞ/s0

ðcg�csÞ/s0þðcs�1Þ
p�þP g

p0þP g

� � 1
cg

: ð48Þ
On the other hand, Eqs. (46a), (46b), (46e) and (46f) give, upon integration,
Y �s ¼ Y s0; ð49Þ

q� ¼ q0

/�s
/s0

; ð50Þ

z� ¼ z0; ð51Þ

N �s ¼ N s0

/�s
/s0

: ð52Þ
Finally, from (29) and (48) it can be shown that
qc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cgðcs � 1Þq0

ðcg � csÞ/s0 þ ðcs � 1Þ
ðp þ P gÞ

cgþ1

cg

ðp0 þ P gÞ
1
cg

vuut : ð53Þ
Introducing this result in (46c) and upon integration we obtain
ðu� � u0Þ ¼ �
2cg

cg � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcg � csÞ/s0 þ ðcs � 1Þðp0 þ P gÞ

1
cg

� �
cgðcs � 1Þq0

vuut ðp� þ P gÞ
cg�1

2cg � ðp0 þ P gÞ
cg�1

2cg

� �
: ð54Þ
To determine the upstream state of a rarefaction, we proceed as follows. Let us assume that all downstream
variables and p� are known. Then, the solid volume fraction and the velocity are calculated from Eqs. (48) and
(54), respectively. All other variables can then be calculated with Eqs. (49)–(52).
3.4. Exact solution of the Riemann problem

In this section, we briefly describe the numerical method employed to solve in an exact way the Riemann
problem associated with the homogeneous part of system (20). This method is based on the solver of Colella
and Glaz [20] for the gasdynamic Euler equations.

Consider an initial discontinuity separating two uniform states, denoted by L (for ‘‘left”) and R (for
‘‘right”). At later times three different waves will be developed, see Fig. 6. The middle wave, separating the
new intermediate states (denoted by 1 and 2) will always be a contact discontinuity moving at the mixture’s
velocity, whereas the left and right waves can be either shocks or rarefactions. Given initial left and right
states, the objective is to calculate the speeds of these waves and the state variables in regions 1 and 2.
1

x

t

RL

21

2

λ

λ
λ

3,4,5,6,7

Fig. 6. Graphic representation of the solution of the Riemann problem. Waves k1 and k2 can be shocks or rarefactions.
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To this end, let us assume that the pressure in region 1 is also known. Then, we may calculate all other
variables in region 1 by employing the relations that hold across the left wave. In particular, if p1 > pL, we
use the Rankine–Hugoniot relations for a shock (33)–(41), otherwise we use the relations for a rarefaction
(48)–(54). Next, across the contact discontinuity, the pressure is conserved, see Eq. (44), so p2 ¼ p1.
Then, in a similar manner as for region 1, we may also calculate all other variables in region 2. Indeed,
if p2 > pR, we use the Rankine–Hugoniot relations for a shock, otherwise we use the relations for a rare-
faction.

Thus, the solution can be parametrized with respect to p1 (which was initially assumed as known). In other
words, we can set up an iterative procedure based on p1 to compute the solution to the Riemann problem. The
criterion of convergence is the velocity u2, because there are two ways to compute this variable. The first way is
via Eq. (43) once the state of region 1 has been calculated. The second way is via the relations that hold across
the right wave. This iteration terminates once the two different numerical predictions for u2 become equal. In
summary, the iterative procedure works as follows,

i. Given an estimate of p1, the flow variables in region 1 are calculated via (33)–(41) if p1 > pL, or via (48)–
(54) if p1 6 pL.

ii. Next, p2 is set at p2 ¼ p1, by virtue of (44).
iii. Next, the flow variables in region 2 are calculated via (33)–(41) if p2 > pR, or via, (48)–(54) if p2 6 pR.
iv. The iteration has converged if u1 ¼ u2 (within a prescribed precision).

4. Steady-wave analysis for two-phase detonations

In this section, we focus on the study of the steady-wave structures of 1D two-phase detonations described
by the proposed approximate model. This analysis is similar to the ZND analysis of gaseous detonations, see
[21].
4.1. Steady-wave profile

Let us consider a steady detonation propagating to the right with speed D, through a quiescent two-phase
medium, denoted by the suffix 0. In the reference frame of the precursor shock, this is equivalent to consider a
stationary shock, into which the quiescent medium flows with speed u0 ¼ �D. In order to determine the pro-
files of the flow variables along the steady detonation, we set the time derivatives of (20) equal to zero. Assum-
ing that the precursor shock is located at x ¼ 0, we have, for each x < 0,
d

dx
ð/gqguÞ ¼ M ; ð55aÞ

d

dx
ð/suÞ ¼ S; ð55bÞ

d

dx
ð/gqguzÞ ¼ Q; ð55cÞ

qu ¼ q0u0; ð55dÞ

q0u2
0 þ p0 ¼ qu2 þ p; ð55eÞ

/g0

p0 þ cgP g

cg � 1
þ /s0

p0 þ csP s

cs � 1
þ q0u2

0

2
þ /g0qg0qgz0 þ /s0qs0qs þ p0

 !
u0

¼ /g

p þ cgP g

cg � 1
þ /s

p þ csP s

cs � 1
þ qu2

2
þ /gqgqgzþ /sqsqs þ p

 !
u; ð55fÞ

N 0u0 ¼ Nu; ð55gÞ
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where M, Q and S are, respectively, given by (7,12) and (19). This is a system of Differential Algebraic Equa-
tions (DAE). By integrating the differential equations of this system and inserting the result in (55f), we get,
after some algebra,
� u2 q0u0

2

cg þ 1

cg � 1

 !
þ u

cg

cg � 1
ðp0 þ P g þ q0u2

0Þ þ q0u0

1

cs � 1
� 1

cg � 1

 ! Z 0

x
S dx� /s0u0

� � !

þ qs

Z 0

x
M dx� qg

Z 0

x
Qdxþ 1

cs � 1
� 1

cg � 1

 !
/s0q0u3

0 � ðp0 þ q0u2
0Þ
Z 0

x
S dx

� �

� csP s

cs � 1
�

cgP g

cg � 1

 !Z 0

x
S dx� u0

cg

cg � 1
ðp0 þ P gÞ �

q0u3
0

2
¼ 0: ð56Þ
The profile of the two-phase detonations can then numerically be computed in the following way. Starting
from the point just behind the shock and advancing through the reaction region, we calculate at each x,
progressively,

i. the velocity u from relation (56),
ii. the solid volume fraction /s from (55b),

iii. the gaseous density qg from (55a),
iv. the solid density qs from (55d),
v. the pressure p from (55e),

vi. the mass reactant fraction z from (55c),
vii. the particle number density N s with (55g),

where the integrals appearing in (56) are approximated numerically from the values of the flow variables as
calculated at the preceding points.

Since relation (56) is a quadratic equation for u, we must select the physically relevant solution. To this end,
let us consider the point just behind the shock, so that the integrations of the source terms S, Q and M are still
zero. The velocity of the mixture at this point is given by
� u2 q0u0

2

cg þ 1

cg � 1

 !
þ u

cg

cg � 1
ðp0 þ P g þ q0u2

0Þ � q0u0

1

cs � 1
� 1

cg � 1

 !
/s0u0

 !

þ 1

cs � 1
� 1

cg � 1
� 1

2

 !
/s0q0u3

0 � u0

cg

cg � 1
ðp0 þ P gÞ ¼ 0 ð57Þ
and thus
u ¼
cg

cg�1
ðp0 þ P g þ q0u2

0Þ � q0u0
1

cs�1
� 1

cg�1

� �
/s0u0 �

ffiffiffi
n
p

q0u0
cgþ1

cg�1

; ð58Þ
where n is the discriminant of (57),
n ¼ ðp0 þ P gÞ
cg

cg � 1
� q0u2

0

/s0

cs � 1
þ

/g0

cg � 1

 ! !2

: ð59Þ
The Lax shock-admissibility criterion implies that uþ c > 0 > u0 þ c0. Since u0 ¼ �D < 0, this also means
that ðc0Þ2 < u2

0. By virtue of (29), this inequality can be written as
ðp0 þ P gÞ
cg

cg � 1
� q0u2

0

/s0

cs � 1
þ

/g0

cg � 1

 !
< 0: ð60Þ
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Then, from (59) and (60) it follows that
ffiffiffi
n

p
¼ �ðp0 þ P gÞ

cg

cg � 1
þ q0u2

0

/s0

cs � 1
þ

/g0

cg � 1

 !
: ð61Þ
Further, if we chose the negative sign in Eq. (58) the expression of u simply reduces to u ¼ u0, which
implies that there is no jump at x ¼ 0. Therefore the physically relevant solution is the one with the positive
sign.
4.2. Minimum detonation speed

It is important to note that a steady detonation can be calculated only if the quadratic equation (56) admits
a solution for each x. Obviously, a solution exists if the discriminant n of (56) is greater or equal to zero. This
discriminant depends on the downstream state and on the material specific constants, but also on the values of
S, M and Q along the detonation profile. In general, it is very difficult to see a priori if a steady-wave solution
exists. Nevertheless, in some cases, we can determine a lower limit for the speed of propagation of the deto-
nation, as done in the ZND theory.

Let us consider the case of reactive solid particles. If the solid temperature becomes sufficiently high behind
the precursor shock, T s > T ign, and since we have assumed an ignition-type mechanism for the solid particle
burning, the solid particles will have reacted completely at x! �1 and therefore /s ! 0. But at x! �1 the
gaseous reaction has also been completed. Then, the integrals in (56) reduce to
Z 0

�1
M dx ¼ �/s0qs0u0; ð62aÞZ 0

�1
S dx ¼ /s0u0; ð62bÞZ 0

�1
Qdx ¼ /g0qg0z0u0: ð62cÞ
Hence, at x! �1, the discriminant of (56) becomes
n ¼
cg

cg � 1
ðp0 þ P g þ q0u2

0Þ
 !2

þ 4
q0u0

2

cg þ 1

cg � 1

 ! 
�/s0qs0u0qs � /g0qg0u0z0qg

þ 1

cs � 1
� 1

cg � 1

 !
/s0q0u3

0 � /s0u0ðp0 þ q0u2
0Þ

� 	
� /s0u0

csP s

cs � 1
�

cgP g

cg � 1

 !

�u0

cg

cg � 1
ðp0 þ P gÞ �

q0u3
0

2

!
: ð63Þ
But for Eq. (56) to have a solution at x! �1, it is necessary that the discriminant be non-negative. There-
fore, after rearranging (63), the following condition should hold
u4
0q

2
0 þ 2q0u2

0ð�cgðp0 þ P gÞ � /s0qs0ðc2
g � 1Þqs � /g0qg0z0ðc2

g � 1Þqg

� /s0ðc2
g � 1Þ p0 þ csP s

cs � 1
�

p0 þ cgP g

cg � 1

 !
Þ þ c2

gðp0 þ P gÞ2 P 0: ð64Þ
For given material constants and for given state ahead of the shock, this inequality becomes a condition on
u0 ¼ �D, i.e., the detonation propagation speed. The left-hand side of this inequality is a quadratic polyno-
mial for u2

0. Therefore the minimum value of u2
0 that satisfies (64) is
u2
0min ¼ aþ

ffiffiffi
b
p

; ð65Þ
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with
a �
cgðp0 þ P gÞ þ ðc2

g � 1Þ /s0qs0qs þ /g0qg0z0qg þ /s0
p0þcsP s

cs�1
� p0þcgP g

cg�1

� �� �
q0

; ð66Þ

b � a2 �
c2

gðp0 þ P gÞ2

q2
0

: ð67Þ
It follows that
�u0 ¼ D >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

ffiffiffi
b
pq

: ð68Þ
We note that the minimum speed reduces to the Chapman–Jouguet velocity for gaseous detonations when the
solid volume fraction /s0 tends to zero.

It is also important to mention that (68), derived by assuming complete burning of the solid particles, is a
necessary condition for the existence of steady detonations. In some cases, but not always, it is also a sufficient
condition. In particular, if S is zero then (68) is also sufficient. To demonstrate this, we first note that since
both reactions (1) and (2) are irreversible, then both

R 0

x Mdx and �
R 0

x Qdx are monotonic (increasing with
decreasing x). It follows that the discriminant n of (56) is also monotonic, and decreasing with decreasing
x. Then, the most restrictive, i.e., the smallest value of n, would indeed be at x! �1, which rends (68) a nec-
essary and sufficient condition for existence of solution of the steady-wave equations. On the other hand, when
S is not zero, and since

R 0

x S dx is not necessarily monotonic, such a conclusion cannot be deduced. In that case,
a condition more restrictive than (68) may exist at another location, �1 < x < 0.

Finally, we mention that when the solid particles are inert the above analysis cannot be performed. In that
case it is impossible to predict the values of the solid volume fraction and the velocity at the end of the two-
phase detonation. This does not allow the calculation of

R 0

�1 S dx in (55e). On the other hand, we have
observed numerically that steady two-phase detonation could exist and propagate at constant speeds that
are lower than the corresponding Chapman–Jouguet speed DCJ for gaseous detonations.
4.3. Description of some steady two-phase detonation profiles

In this section, we present some typical steady two-phase detonation profiles, propagating with speed D

through a mixture of reactive or inert solid particles. As usual, the overdrive factor of the detonation is given
by f ¼ ðD=DCJÞ2 where DCJ is the Chapman–Jouguet velocity of the corresponding gaseous detonation. For
gaseous detonations, we always have f P 1. This is not necessarily true for two-phase detonations.

Pressure, density and temperature variables are non-dimensionalized with respect to the corresponding val-
ues of the gas in the quiescent medium, while the half-reaction length, L1=2, i.e., the distance between the pre-
cursor shock and the point where z ¼ 0:5, has been used as unit length. The values of the material-specific
constants are taken as
cg ¼ 1:2; P g ¼ 0; cs ¼ 4:22; P s ¼ 3:24� 105:
The state variables in the quiescent medium are
pg ¼ ps ¼ 1; qg ¼ 1; qs ¼ 8050:
The reaction-parameters for the gaseous reaction are set to
Kg ¼ 230:75; qg ¼ 50; Eag ¼ 50:
The above values correspond to a gaseous ZND detonation of overdrive factor f ¼ 1:6. The value of the
(non-dimensional) gaseous heat capacity is cv;g ¼ 1=ðcg � 1Þ, while the solid heat capacity is set to cv;s ¼
2:5cv;g.

Finally, in the calculation of the heat transfer coefficient H in (10), cpg is determined by cpg ¼ cg cv;g. We also
set Pr ¼ 0:75, l0 ¼ 10�5.
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4.3.1. Case A: inert particles

Since the particles are assumed to be inert, then Ks ¼ 0 and qs ¼ 0. In the quiescent medium ahead of the
shock the particles have a diameter of ds ¼ 10�3 and the solid volume fraction is /s ¼ 10�4.

Figs. 7–9 show profiles of the pressure, temperatures and solid volume fraction, respectively, for the two-
phase detonation and the corresponding gaseous detonation propagating at the same speed. In Figs. 7 and 8
we observe that the presence of solid particles in the reactive medium yields a much higher post-shock pressure
and gaseous temperature. This leads to a faster burning of the reactive gas (z ¼ 0:5 at x ¼ �0:1L1=2Þ, instead of
x ¼ �L1=2 in the corresponding gaseous detonation. Therefore, the reaction is concentrated in a very thin zone
right behind the shock. Inside this zone the pressure drops as the gas accelerates, as well as the solid volume
fraction. The thin reaction zone is then followed by a large region inside which heat is transferred from the hot
burnt gas to the particles. The two phases reach thermal equilibrium at T ¼ 3:41, quite lower than in the cor-
responding gaseous detonation.

We observe that, even at low particle concentrations, the pressure behind the shock is much higher than the
pressure field of purely gaseous detonations. The physical explanation for the increased pressures is the fol-
lowing. The primary effect of the particle addition is to increase the density of the mixture. For this reason,
the density of the particulate phase is as significant a parameter as the volume fraction. Thus, it is better to
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Fig. 7. Case A: pressure profiles for a steady two-phase detonation wave with inert particles (solid line) and the gaseous ZND wave at the
same velocity (dashed line).
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Fig. 8. Case A: steady-state temperature profiles for the two-phase detonation with inert particles (solid line) and the gaseous detonation
propagating at the same velocity (dashed line). Gas variables are represented by thin lines and solid variables are represented by bold lines.
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Fig. 9. Case A: steady-state solid volume fraction profile for the two-phase detonation with inert particles.
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consider the partial density (qa/a) as the relevant physical quantity because it is the sum of the partial densities
that equals the mixture density. Addition of few heavy particles has a profound effect on the mixture density.
In this case, the partial densities of the two phases are approximately equal even though the solid volume con-
centration is small, qs/s ’ qg/g. Thus, qs/s þ qg/g ’ 2qg/g ’ 2qg, since /g ’ 1. For such low concentrations,
we can roughly approximate the jump across a shock propagating in this medium by the jump across a shock
propagating in pure gas with density equal the density of our mixture, 2qg. In purely gaseous flows a doubling
of the density ahead of the shock results in an increase of the post-shock pressure of the same order, when the
shock speed remains the same. In the two-phase medium, the jump relations of our model predict the same
behaviour: the larger the partial density of the solid phase is, the larger the post-shock pressure becomes under
constant shock speed. This is precisely what Fig. 7 shows.

It is also worth mentioning that the heat transfer between the two phases results in an increase in the solid
volume fraction, cf. (19) and (20e). This implies the formation of a compaction zone behind the detonation,
due to thermal non-equilibrium between the two phases. The fact that thermal non-equilibrium alone can
directly evolve the solid volume fraction has been predicted by the model of Papalexandris [7], whereas the
Baer and Nunziato model [3] predicts that evolution of the solid volume fraction, in the absence of mass trans-
fer between the two phases, can be produced by mechanical non-equilibrium only.

4.3.2. Case B: reactive particles

In this case, the solid particles of the mixture are considered as reactive. The parameters of the heteroge-
neous reaction are set to
Ks ¼ 2� 10�7; qs ¼ 50; T ign ¼ 2:
Moreover, in the quiescent medium ahead of the shock, the following values are set, /s ¼ 5� 10�5 and
ds ¼ 10�3. The propagation speed of this steady detonation is D ¼ 8:66, corresponding to an overdrive factor
of f ¼ 1:6. Given the above physical parameters, the minimum speed for a steady two-phase detonation, as
determined by (68), is Dmin ¼ 7:6. This implies that minimum overdrive factor is fmin ¼ 1:27.

Figs. 10–12 show profiles of the pressure, temperatures and solid volume fraction, respectively, for the two-
phase detonation with reactive particles and the corresponding one with inert particles that propagates at the
same speed. Right behind the shock, the profile of the detonation with reactive particles is identical to the one
with inert particles. The high post-shock temperature results in fast burning of the gas with subsequent release
of heat. Some of this heat is transferred to the particles. As a result, the solid temperature is slowly rising. Once
it reaches the ignition temperature the particle begin to react.

So overall, the region behind the leading shock can be divided in three zones. The first one is the thin, about
0.25 L1=2, gaseous reaction zone. A particle compaction area is formed due to momentum transfer from the gas
to the solid particles. The second one, having a length of about 5 L1=2, is the induction zone for the heteroge-
neous reaction, and is characterized by the heating-up of the particles by the hot burnt gas. In other words,
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Fig. 10. Case B: steady-state pressure profiles for the two-phase detonation with reactive particles (solid line) and the corresponding two-
phase detonation with inert particles (dashed line).
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Fig. 11. Case B: steady-state temperature profiles for the two-phase detonation with reactive particles. Gas temperature is represented by
thin line and solid temperature by bold line. The dashed line depicts the temperature field for the corresponding purely gaseous detonation.
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Fig. 12. Case B: steady-state solid volume fraction profiles for the two-phase detonation with reactive particles (solid line) and the
corresponding two-phase detonation with inert particles (dashed line).
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inside this zone the gas temperature drops and the solid temperature rises. This zone is also characterized by
high values of particle concentration due to momentum transfer from the gaseous phase to the particulate one.
In other words, the particle compaction area that was developed in the first zone extends to the second zone
also.

The third zone is the particle burning zone and is approximatively 55 L1=2 long. Since the particles do not
burn as fast as the gas does, the length of this zone is much longer than the one of the first zone. It is interesting
to mention that the product of this heterogeneous reaction is hot gas. Therefore, the temperature of the gas-
eous phase increases as the reaction proceeds. The temperature of the particles is then increased also via the
heat transfer mechanism between the two phases. The two phases reach thermal equilibrium near the end of
this zone. Beyond this zone, the medium consists of hot burnt gases only.

5. Numerical results and discussion

In this section, we present results of one-dimensional simulations and a preliminary two-dimensional sim-
ulation, based on the proposed conservative approximation. The algorithm that we employed in these simu-
lations is the unsplit scheme for hyperbolic conservation laws with source terms proposed by Papalexandris
et al. [22,23]. According to this approach, all convective and source terms are integrated simultaneously, with-
out time splitting. As in the previous section, pressure, density and temperature variables are non-dimension-
alized with respect to the corresponding values of the gas in the quiescent medium, while the half-reaction
length, L1=2, i.e., the distance between the precursor shock and the point where z ¼ 0:5, has been used as unit
length.

5.1. One-dimensional numerical simulations

We consider a gaseous ZND detonation that impacts a quiescent heterogeneous mixture, located at
x ¼ 500 L1=2, containing inert (Case C) or reactive particles (Case D). We perform the simulations in the frame
of the laboratory. Therefore, inflow conditions are imposed on the left boundary, while outflow conditions are
imposed on the right boundary. As in the previous section, the material specific constants are
cg ¼ 1:2; P g ¼ 0; cs ¼ 4:22; P s ¼ 3:24� 105:
In the quiescent medium, the variables are
pg ¼ ps ¼ 1; qg ¼ 1; qs ¼ 8050; ds ¼ 0:001:
The gaseous reaction-parameters are set to
Kg ¼ 230:75; qg ¼ 50; Eag ¼ 50:
These parameters correspond to a ZND wave of overdrive factor f ¼ 1:6. The equivalent gaseous detonation
has been studied extensively in the past; see, for example, Papalexandris et al. [22] and references therein. It
represents a case of a pulsating detonation, that is, a detonation with one linearly unstable mode.

5.1.1. Case C: inert particles

In this case, the solid particles ahead of the shock have a volume fraction of /s ¼ 10�3. Since they are
assumed to be inert, we set Ks ¼ 0 and qs ¼ 0. The spatial resolution of the simulation is 100 points per unit
length. Numerical convergence studies have shown that this spatial resolution is sufficient to properly resolve
all relevant scales of the flow field. The simulations are performed with a CFL ¼ 0:5. The length of the com-
putational domain is 1200 L1=2.

Fig. 13 shows profiles of pressure at times t ¼ 40:0 and t ¼ 170:0, Figs. 14 and 15 show profiles of temper-
ature, and solid volume fraction, respectively, at time t ¼ 170:0, and Fig. 16 shows on an x � t diagram the
trajectory of the precursor shock. At t ¼ 40:0 the detonation has not yet encountered the two-phase medium
and pulsates with high pressure peaks. The maxima of the shock pressure exceed p ¼ 90. The average speed of
the detonation is, approximately, Dav � 8:66, which is close to the predicted ZND value. When the detonation
reaches the contact line that separates the purely gaseous medium and the heterogeneous mixture it interacts
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Fig. 13. Case C: pressure profiles of the transmission of a gaseous detonation to a two-phase mixture with inert particles at times t ¼ 40
and t ¼ 170.
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Fig. 14. Case C: gas temperature profile of the transmission of a gaseous detonation to a two-phase mixture with inert particles at time
t ¼ 170.
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Fig. 15. Case C: solid volume fraction profile of the transmission of a gaseous detonation to a two-phase mixture with inert particles at
time t ¼ 170.
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Fig. 16. Case C: x � t diagram of the trajectory of the precursor shock.
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with it, thus producing a transmitted detonation and a reflected inert shock. The post-shock pressure of the
transmitted detonation is higher than the one predicted by the ZND theory for the initial gaseous detonation,
p � 112, cf. Fig. 13. The strength of the precursor shock of the transmitted detonation remains constant with
time, i.e., this is a case of a stable detonation. However, its speed is much lower than the one of the initial
gaseous detonation, see Fig. 16. Indeed, after having encountered the two-phase medium, the propagation
speed of the detonation rapidly decreases to D � 3:5. We therefore deduce that the inert solid particles tend
to stabilize the detonation but they also decelerate the detonation speed.

In Fig. 15, we observe that behind the detonation wave the solid volume fraction increases. In other words,
there is formation of a compaction zone. The formation of this compaction zone is due to the fact that the
transmitted detonation ‘‘pulls” the solid particles with it, through the mechanism of mechanical relaxation.
It is confined between the precursor shock and a contact discontinuity. As expected, this contact discontinuity
moved at speed that is lower than the detonation speed. Therefore, the length of the particle compaction zone
increases continuously. Finally, it is interesting to note that the profile of the transmitted detonation predicted
by this simulation is in very good agreement with the equivalent steady-wave profile, cf. Section 4.3.

We have also performed a parametric study to explore the effect of the solid volume fraction in the quies-
cent mixture, /s0. Fig. 17 depicts the variation of the average propagation speed Dav of the transmitted det-
onation with respect to /s0. It is observed that Dav decreases monotonically with /s. The drop of Dav in the
region of small /s is quite large, whereas at larger solid volume fractions the rate of decrease of Dav drops.
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Fig. 17. Case C: variation of the average speed of propagation Dav with respect to the volume fraction of the solid particles.
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A similar trend had been observed in the simulations presented in [9,10], which treated the case of incompress-
ible solid particles.

A grid-convergence study for this case has also been performed. As criteria for numerical convergence we
have used the average detonation speed, Dav, and a discrete version of the L1 norm of the error in the predic-
tion of the pressure. The average wave speed is a global quantity of detonating flows commonly used as a mea-
sure of the accuracy of simulations. The error of the average wave speed between t ¼ 100 and t ¼ 200,
jDex � Dav j =Dex, is plotted against the grid resolution in Fig. 18. For D̂ we have considered the average wave
speed predicted by a simulation using a grid of 200 points/L1=2.(This is the most refined grid employed in our
study). It can be verified that the differences between successive approximations decay rapidly as the grid is
refined. The convergence rate is equal to, approximately, 1.1.

The L1 norm of the error in the prediction of the pressure is also frequently used as an indicator of numer-
ical accuracy. It is defined as
Fig. 19
EN cðtÞ ¼
1

N c

XN c

j¼1

jpjðtÞ � pexj
ðtÞj; ð69Þ
where N c is the number of computational cells of the domain, and pj and pexj
are the computed and exact val-

ues of the pressure, respectively. Values of pexj
are calculated with a simulation using 200 points/L1=2. Results

of the numerical error at t ¼ 200 are plotted in Fig. 19. The convergence rate is approximately 1.4, which is
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Fig. 18. Grid convergence study for case C: variation of the predicted average wave speed with the grid resolution.
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faster than the convergence rate of the average wave speed. In other words, the average wave speed is less sen-
sitive to grid resolution than the pressure. This behaviour is commonly encountered in convergence studies of
compressible flows in the presence of hydrodynamic discontinuities.

5.1.2. Case D: reactive particles

In this case, we consider a two-phase mixture containing reactive solid particles with /s ¼ 5� 10�5. The
heterogeneous reaction-parameters are Ks ¼ 2� 10�7, qs ¼ 50 and T ign ¼ 2. The spatial resolution of this sim-
ulation is 100 points per unit length, and it is performed with CFL ¼ 0:5. The length of the computational
domain is 2000 L1=2.

Figs. 20–22 show profiles of pressure, gas temperature and solid volume fraction, respectively, at times
t ¼ 40, t ¼ 120 and t ¼ 210. As in the previous case, at t ¼ 40:0 the detonation has not yet encountered the
two-phase medium and pulsates with high pressure peaks. When the detonation reaches the contact line that
separates the purely gaseous medium and the reactive heterogeneous mixture, it interacts with it and produces
a transmitted detonation and a reflected inert shock. As usual, the transmitted detonation pulls the solid par-
ticles, via the momentum transfer mechanism between the two phases, leading to the formation of a compac-
tion zone, see Fig. 22. Further, the solid particles are heated, and their temperature rapidly exceeds the
0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

x

p

Fig. 20. Case D: pressure profiles of the transmission of a gaseous detonation to a two-phase mixture with reactive particles at times
t ¼ 40, t ¼ 120 and t ¼ 210.
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Fig. 21. Case D: gas temperature profiles of the transmission of a gaseous detonation to a two-phase mixture with reactive particles at
times t ¼ 40, t ¼ 120 and t ¼ 210.
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Fig. 22. Case D: solid volume fraction profile of the transmission of a gaseous detonation to a two-phase mixture with reactive particles at
time t ¼ 210.
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threshold temperature T ign, above which they begin to react. Consequently, the pressure and temperature of
the resulting heterogeneous detonation behind the leading shock are considerably higher than the ones of the
transmitted gaseous one.

Further, the simulation predicts that when the detonation starts propagating through the heterogeneous
mixture it initially loses some of its strength and slows down but it subsequently accelerates. Its propagation
velocity stabilizes at Dav ¼ 8:2. This value is slightly higher than the minimum value predicted by (68) for the
parameters of the present case (Dmin ¼ 7:68), but still slightly lower than the propagation speed of the initial
ZND detonation DZND ¼ 8:66.

The detonation profile at t ¼ 210 is in good agreement with the steady detonation propagating at the same
speed. In particular, behind the precursor shock there is formation of the same three zones that are predicted
by the steady-wave analysis in Section 4.3; see Figs. 20–22. The first one is the gaseous reaction zone inside
which the pressure decreases. The second one is the induction zone, characterized by heat transfer from the
gaseous phase to the solid particles and increasing pressure. Finally, the third one is the particle burning zone.
It begins at the point where the solid temperature has reached the ignition value and terminates at the point
where all particles are completely burnt.

5.2. Two-dimensional numerical simulation

Next, we present some preliminary results of simulations of two-dimensional heterogeneous detonations
containing reactive particles. In this simulation, a steady heterogeneous detonation profile, propagating with
f ¼ 1:6 to the right along the x-axis, is used as initial condition. The pressure of this initial profile has been
slightly perturbed along the transverse direction, in order to accelerate the growth of the flow instabilities. The
dimensions of the computational domain are 40� 10 L2

1=2. The spatial resolution is set at 50 points =L1=2 and
the CFL number is set at CFL ¼ 0:5. The simulation is performed in the reference frame of the initial profile.
Therefore, inflow conditions are imposed on the right boundary, and outflow conditions on the left boundary.
On the lateral surfaces of the domain, wall boundary conditions are applied. The material specific constants
are identical to those used in the 1D simulation of case B, except that in this 2D simulation we set Ks ¼
5� 10�7.

Figs. 23 and 24 show contour plots for the pressure and the solid volume fraction, respectively. It can be
observed that the structure of the detonation front has the typical characteristics of that of a gaseous detona-
tion. More specifically, the flow instabilities lead to the formation of triple points that move along the shock
(transversally with respect to the flow direction). Their strength and velocity are different and, therefore, they
eventually collide, resulting in large over-pressures. The trajectories of the triple points form the classical cel-
lular structure of detonations. The detonation speed is D ¼ 8:66, which is close to the speed of the equivalent



Fig. 24. Two-dimensional simulation of a heterogeneous detonation with reactive particles: /s contours at time t ¼ 100.
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Fig. 23. Two-dimensional simulation of a heterogeneous detonation with reactive particles: pressure contours at t ¼ 100.
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one-dimensional steady wave. It is also interesting to mention that the flow-field behind the leading front can
be sub-divided into three zones, just as in the 1D detonation that were examined earlier. In particular, we have
a thin gaseous reaction zone right behind the shock, followed by the induction zone in which the burnt gas
heats up the solid particles. The third zone is the heterogeneous reaction zone and it starts from the points
where T g has reached the ignition temperature and terminates at the points where the solid particles have been
burnt completely, /s ¼ 0. As expected, this zone is longer than the other two, because the particles burn much
slower than the gas.

Finally, it is worth mentioning that we have tried to compare our numerical results with experimental ones.
However, there are very few experimental studies of heterogeneous detonations at low solid volume fractions.
Comparisons between our numerical predictions and the available experimental data (Sedov et al. [24], Veys-
sière et al. [25] and Carvel et al. [26] for example) show that the proposed reduced model seems capable of
accurately reproducing at least the important structures of the flow, such as secondary pressure waves and
compaction zone, etc. However, a detailed quantitative comparison can not be made at this point because
of three-dimensional effects and because of the simplified reaction model for the solid particles that we employ.

6. Conclusions

In this paper, we have presented and analyzed a conservative approximation to compressible two-phase
flow models in the stiff mechanical relaxation limit (one-pressure one-velocity models), [15]. Such approxima-
tion can be employed when the density and sound speed of the solid phase are considerably higher than those
of the gaseous phase, which is often the case in gas–solid particles mixtures of technological and industrial
interest. The mixture sound speed based on the proposed conservative model is very close to the one based
on [15] at low and moderate concentrations of the dispersed phase. Thus, we expect that at such concentration
levels the conservative model can be used instead of its non-conservative counterpart.

A characteristic analysis reveals that the governing equations constitute a hyperbolic system of conserva-
tion laws which is complete but possesses a fivefold linear degeneracy. The Rankine–Hugoniot relations
and Riemann invariants of the homogeneous part have also been derived. Further, the eigenvalue ordering
is such as that the solution of the Riemann problem has the same wave ordering as the one of the classical
gasdynamic Riemann problem, i.e., two waves that can be either shocks or rarefactions and a contact line
between them. In the case where both phases obey a stiffened gas equation of state, the Rankine–Hugoniot
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and Riemann invariants relations can be integrated analytically. These analytical expressions were employed
in the development of an exact Riemann solver.

Further, the profiles of steady heterogeneous detonations have been studied. It turns out that under certain
circumstances, a minimum speed of propagation exists. At the limit of very dilute mixtures this minimum
speed tends to the Chapman–Jouguet velocity of gaseous detonations. The structure of the two-phase steady
waves in mixtures of reactive particles is characterized by the existence of three main zones: gaseous reaction
zone, induction zone (heating of the particles by the gas), and particle burning zone. On the other hand, if the
particles are inert, there are only two zones: gaseous reaction zone and particle compaction zone.

These structures were also predicted numerically in the 1D and 2D simulations we performed. These sim-
ulations further showed that the presence of the particles tends to attenuate the instabilities that are inherent in
gaseous detonations but also results in lower detonation speeds (with respect to gaseous detonations). Finally,
our simulations predicted 2D heterogeneous detonations are also characterized by the development of triple-
points along the front which eventually collide, thus forming the well-known cellular structure.
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